

www.elsevier.com/locate/jfluchem

in the 5-position, the required starting 4-aminoimidazoles are unstable. In our synthesis of 4-fluoroimidazole (2), we

circumvented this problem by generating 4-aminoimidazole

in situ by HBF₄-mediated hydrolysis of the 4-t-butyloxy-

carbonylamino precursor [3]. Diazotation and in situ

photolysis provided a convenient route to 2. We used the

analogous strategy to prepare 1. 5-Fluoroimidazole-4-car-

boxylic acid ethyl ester (3), prepared as reported [3,4],

was treated with hydrazine hydrate to give the

corresponding hydrazide 4 in 81% yield. Oxidation with

HNO₂ and heating of the resulting carbonyl azide 5 in t-

butyl alcohol gave Boc-protected 5-amino-4-fluoroimidazole (6). This was dissolved in cold HBF₄ to generate the free amine. Addition of a concentrated aqueous solution of

NaNO₂ and irradiation of the resulting diazonium tetrafluoroborate gave the target compound 1 (36% from 6). In

addition, 8% of 4-fluoroimidazole was isolated, presumably

by reduction of a radical formed by homolytic extrusion of

Synthesis of 4,5-difluoroimidazole

Bohumil Dolensky^a, Yoshio Takeuchi^b, Louis A. Cohen^{a,*}, Kenneth L. Kirk^{a,*}

^aLaboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA ^bFaculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama, Japan

Received 3 October 2000; accepted 4 October 2000

Abstract

5-Fluoroimidazole-4-carboxylic acid ethyl ester was converted to the corresponding hydrazide. Oxidation of the hydrazide to the carbonyl azide and Curtius rearrangement in t-butyl alcohol produced 4-t-butyloxycarbonylamino-5-fluoroimidazole. Dissolution of the tbutyl carbamate in 50% HBF₄, in situ diazotation of the resulting amine, and irradiation produced the target compound. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Photochemical Schiemann reaction; Fluoroimidazoles

1. Introduction

We reported previously a study of the acid- and basecatalyzed hydrogen exchange of a series of fluoroimidazoles, including 4,5-difluoroimidazole (1) [1]. This molecule (1) is a rare example of imidazole with two fluorine atoms substituted on the heteroaromatic ring [2]. We had prepared this derivative as part of our investigation of the effects of ring-fluorination on the physical and chemical properties of imidazoles, and reported some of the physical properties of 1 [1]. The details of the synthesis of 1 are the subject of this note.

2. Chemistry

The synthesis of 1 is based on the photochemical Schiemann reaction, a reaction we developed in 1970 to prepare the first examples of ring-fluorinated imidazoles [3]. This procedure remains the only general method to prepare such derivatives. However, use of this strategy to prepare 4-fluoroimidazoles is complicated by the fact that, unless an electron-withdrawing substituent is present

nitrogen.

0022-1139/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0022-1139(00)00385-7

¹⁾ HBF₄ Corresponding author. Tel.: +1-301-496-2619; fax: +1-301-402-4182. 2) NaNO₂ NHBoc t-BuOH reflux

E-mail address: kennethk@bdg8.niddk.nih.gov (K.L. Kirk).

^{*} Deceased, 12 September 1996.

¹2,4-Difluoroimidazole-5-carboxylic acid ethyl ester and related compounds are other rare examples.

3. Experimental details

 1 H (300 MHz), 13 C (75.5 MHz) and 19 F NMR (282.3 MHz) spectra were obtained on a Varian Mercury 300 spectrometer. Coupling constants (J) are given in Hz. Chemical shifts (δ) are given in ppm relative to the following standards: TMS for 1 H and 13 C NMR, and CFCl $_{3}$ for 19 F NMR. Melting points (mp) were determined on a Thomas–Hoover capillary melting point apparatus and are uncorrected. Chemical ionization mass spectra were obtained on a Finnigan/extrel Model 1015 mass spectrometer with ammonia as reagent gas.

3.1. 5-Fluoroimidazole-4-carboxylic acid hydrazide (4)

To 5-fluoroimidazole-4-carboxylic acid ethyl ester (3) (1.57 g, 0.01 mol) in a 25 ml round bottom flask fitted with a reflux condenser was added 1.0 ml of hydrazine hydrate. This was stirred and heated in an oil bath at 100°C for 30 min. After about 10 min the mixture became nearly homogenous, and a new precipitate then formed. The mixture was cooled in an ice bath and the crystals were collected by suction filtration and washed with a small amount of cold water to give 1.17 g (81%) of 4, homogenous by TLC and suitable for the next step. An analytical sample was prepared by recrystallization from ethanol/water: mp 225-235°C (dec.). ${}^{1}H$ NMR (DMF-d₇) δ 3.54 (vbs, 1H), 4.51 (bs, 2H), 7.61 (d, 1H, ${}^{4}J_{HF} = 1.5$, CH), 8.91 (bs, 1H); ${}^{13}C$ NMR (DMF-d₇) δ 105.17 (d, ${}^{2}J_{CF} = 33.4$, C–CF), 132.78 (d, ${}^{3}J_{CF} = 18.6$, CH), 156.38 (d, ${}^{1}J_{CF} = 238.8$, CF), 159.75 (d, ${}^{3}J_{CF} = 4.9$, CO); ${}^{19}F$ NMR (DMF-d₇) δ -126.4 (s). HRMS (EI): calculated for C₄H₅FN₄O, 144.0447; found, 144.0447.

3.2. 5-Fluoroimidazole-4-carbonyl azide (5)

To a mixture of 1.00 g (6.9 mmol) of **4** and 4 ml of ice water in a 50 ml beaker was added 1.00 ml of 12N HCl. The mixture was stirred and cooled in an ice bath while a solution of 1.00 g of NaNO₂ in 2.00 ml of water was added dropwise over 15 min. After an additional 15 min of stirring, with occasional agitation with a spatula to decrease the effects of foaming, the solid was collected by suction filtration and washed with a small amount of cold water to give **5** (944 mg, 88%). The product was dried and used in the next step without purification: mp 144–146°C. ¹H NMR (CD₃OD) δ 7.60 (d, ${}^4J_{\text{HF}} = 1.7$, CH); 13 C NMR (CD₃OD) δ 105.45 (d, ${}^2J_{\text{CF}} = 29.8$, C–CF), 135.88 (d, ${}^3J_{\text{CF}} = 16.9$, CH), 160.38 (d, ${}^1J_{\text{CF}} = 252.8$, CF), 163.71 (d, ${}^3J_{\text{CF}} = 5.7$, CO); 19 F NMR (282 MHz, CD₃OD) δ –117.5 (s). HRMS (EI): calculated for C₄H₂FN₅O, 155.0291; found, 155.0238.

3.3. (5-Fluoroimidazol-4-yl)-carbamic acid t-butyl ester (6)

A solution of 944 mg (6.09 mmol) of **5** in 60 ml of anhydrous *t*-butyl alcohol was refluxed for 24 h. The

reaction mixture was then concentrated to give 1.15 g (94%) of **6** of sufficient purity for the next step. A sample was chromatographed on silica gel (ethyl acetate/petroleum ether, 1:1) to give **6** as colorless crystals: mp 177–185°C (dec.). 1 H NMR (CDCl₃/CD₃OD 1:2) δ 1.50 (s, 9H), 7.05 (d, 1H, $^{4}J_{HF} = 1.4$, *CH*); 13 C NMR (CDCl₃/CD₃OD 1:2) δ 28.52 (*CH*₃), 81.63 (*C*(CH₃)₃), 104.90 (d, $^{2}J_{CF} = 30.3$, *C*–CF), 125.71 (d, $^{3}J_{CF} = 14.9$, *CH*), 148.12 (d, $^{1}J_{CF} = 231.6$, *CF*), 155.77 (s, *CO*); 19 F NMR (CDCl₃/CD₃OD 1:2) δ –144.6 (s). HRMS (FAB): calculated for $C_8H_{13}FN_3O_2$ (MH⁺), 202.0992; found, 202.0985.

3.4. 4,5-Difluoroimidazole (1)

To 50 ml of 48% aqueous HBF₄, stirred and cooled to -5to 0°C, was added 400 mg (2 mmol) of 6. The solid dissolved and gas was evolved. After 10 min stirring, a solution of 200 mg of NaNO₂ in 1.0 ml of water was added dropwise. The presence of the diazonium salt was indicated by formation of a deep red color upon reaction with a basic solution of β-naphthol, and by the presence of a peak at 278 nm in the ultraviolet spectrum. After stirring at 0°C for an additional 15 min, the solution was irradiated for 1 h at 0°C with a Hanovia mercury vapor lamp, as described previously [3,4]. This resulted in the disappearance of the ultraviolet absorption maximum and the irradiated solution gave no visible reaction with basic β-naphthol. The solution was chilled in dry ice/acetone and neutralized with 40% aqueous NaOH. The mixture was then extracted three times with ethyl acetate, the ethyl acetate was dried (Na₂SO₄), and then concentrated to dryness. The residual white solid, containing product and NaBF₄, was chromatographed on silica gel (1:1 ethyl acetate/petroleum ether) to give 77 mg (36%) of **1** as a semi-crystalline solid. ¹H NMR (CDCl₃) δ 6.97 (s, CH), 12.53 (bs, NH); ¹³C NMR (CDCl₃, dec. ¹H off) δ 118.83 (dt, ${}^{1}J_{\text{CH}} = 216.9$, ${}^{3}J_{\text{CF}} = 10.9$, CH), 130.90 (ddd, $^{1}J_{\text{CF}} = 244.8, \,^{3}J_{\text{CH}} = 8.2, \, CF); \,^{19}\text{F NMR (CDCl}_{3}) \,\delta - 160.1$ (s). HRMS: calculated for C₃H₂N₂F₂, 104.0186; found, 104.0184. Further elution of the chromatographic column gave a fraction containing 22 mg (8%) of 4-flouoroimidazole (2), identical to material prepared previously. ¹H NMR (CDCl₃) δ 6.56 (d, ${}^{3}J_{CF} = 8.0$, 1H, CH=CF), 7.26 (s, 1H, N-CH=N), 10.95 (bs, 1H, NH); ¹³C NMR (CDCl₃, dec. ¹H off) δ 94.38 (d, ${}^{2}J_{CF} = 37.8$, ${}^{1}J_{CH} = 196.6$, CH = CF), 128.85 (d, ${}^{3}J_{CF} = 15.9$, ${}^{1}J_{CH} = 211.7$, ${}^{3}J_{CH} = 8.3$, N-CH=N), 156.95 (d, ${}^{1}J_{CF} = 233.5$, ${}^{2}J_{CH} = 13.3$, ${}^{3}J_{CH} =$ 5.7 CF); 19 F NMR (CDCl₃) δ -139.9 (d, 8.0).

References

- [1] Y. Takeuchi, K.L. Kirk, L.A. Cohen, J. Org. Chem. 44 (1979) 4240.
- [2] K. Takahashi, K.L. Kirk, L.A. Cohen, J. Org. Chem. 49 (1984) 1951
- [3] K.L. Kirk, L.A. Cohen, J. Am. Chem. Soc. 93 (1971) 3060.
- [4] K.L. Kirk, L.A. Cohen, J. Am. Chem. Soc. 95 (1973) 4619.